
Introduction of a very important neuroscience research article 

for the non-neuroscientist reader 

Prolonged exposure to unremitting stress damages a person’s health. The 
research is unequivocal (read the science in the WBI Research Library). Mental 
health impact begins with anxiety. In worst cases, trauma can result. The 
diagnosis can be elusive because of the strict definition in the DSM-IV-TR (the 
diagnostic bible) and the reluctance of clinicians to admit what Heinz Leymann 
knew back in the late 1980’s — work trauma is real.  

Now comes a potential new neuroscience tool to complement the diagnostic 
toolkit — MEG. MEG stands for magnetoencephalography. PTSD can be 
detected with 97% accuracy using this non-invasive, but still experimental, 
procedure. 

MEG measures the magnetic signals produced by the activity of the brain. 
Signals derive from the net effect of ionic currents flowing in the dendrites of 
neurons during synaptic transmission (EEG tests also measure these currents 
though slightly differently). These signals are very small. By comparison, the 
heartbeat produces a stronger signal. Magnetic resonance imaging (MRI) uses 
magnetic fields with a signal 3,000,000,000,000,000 stronger than the signal 
produced by the brain. In order to generate a signal that is detectable, 
approximately 50,000 active neurons are needed. 

The essence of the MEG test is the measurement of the dynamic synchronous 
neural (bundled) interactions, an essential aspect of the brain function. MEG 
Dewars (caps) are helmet-shaped and contain as many as 300 sensors, covering 
most of the head. Then, complex statistical analyses of the data are required to 
differentiate activity across various areas of the brain to identify specific patterns. 

MEG can detect neuronal events with a precision of 10 milliseconds or less, while 
fMRI, which depends on changes in blood flow, has a lower precision of several 
hundred milliseconds. MEG also accurately pinpoints sources in primary auditory, 
somatosensory and motor areas. 

Research on brain–machine interfaces has been ongoing for at least a decade. 
During this period, simultaneous recordings of the extracellular electrical activity 
of hundreds of individual neurons have been used for direct, real-time control of 
various artificial devices. Thinking about moving an arm is converted to moving 
an artificial limb. Neuroprosthetics restores mobility in severely paralyzed 
patients. 



 

MEG has been used to diagnose Alzheimer’s, Parkinson’s disease, epilepsy, 
schizophrenia, Sjögren’s syndrome, chronic alcoholism, facial pain, and multiple 
sclerosis.  “Communication patterns are very different from disease to disease,” 
says Dr. Apostolos Georgopoulos from the Brain Sciences Center at the 
Minneapolis VA Medical Center and University of Minnesota. “So the different 
diseases create disturbances in the communication that can be used as a 
fingerprint, a signature, for the disease.” 

For years, the diagnosis of PTSD, has been a subjective process involving 
mental-health professionals conducting structured interviews with patients 
suffering PTSD-like symptoms. 

In the attached article published in the Jan. 2010 issue of the Journal of Neural 
Engineering, Georgopoulos and his research team reported the successful 
diagnosis of PTSD using MEG. The Minnesota researchers used MEG to assess 
74 U.S. military veterans believed to be suffering from PTSD, along with 250 
subjects not thought to be suffering from the condition. Distinctive brain patterns 
indicating PTSD were found in 72 — or 97.3% — of the 74 people diagnosed 
with PTSD through the traditional interview process; false positives turned up in 
31 of the 250 subjects (12.4%) without PTSD. The findings counter the popular 
notion that PTSD is not a real disease but a fabricated disorder. The neuronal 
patterns revealed a distinctive communication pattern, the “PTSD fingerprint.” 

Georgopoulos likens the MEG test for PTSD to diabetic blood-glucose monitoring 
tests to keep the disease under control. “The test is totally safe — there are no 
magnets, no isotopes — you can do it as frequently as you want,” Georgopoulos 
says, adding that it also doesn’t require dredging up the traumatic events that 
generate PTSD. “The whole thing takes literally a minute.” 

This most recent application of neuroscience to the world of stressed and 
traumatized individuals seems profound. However, the question remains about 
how to distribute the technology and methods to medical practitioners for use in 
the field. 

Thanks to Wikipedia, Time magazine, and the J. Neural Engineering for help. 
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Abstract
Traumatic experiences can produce post-traumatic stress disorder (PTSD) which is a
debilitating condition and for which no biomarker currently exists (Institute of Medicine (US)
2006 Posttraumatic Stress Disorder: Diagnosis and Assessment (Washington, DC: National
Academies)). Here we show that the synchronous neural interactions (SNI) test which assesses
the functional interactions among neural populations derived from magnetoencephalographic
(MEG) recordings (Georgopoulos A P et al 2007 J. Neural Eng. 4 349–55) can successfully
differentiate PTSD patients from healthy control subjects. Externally cross-validated,
bootstrap-based analyses yielded >90% overall accuracy of classification. In addition, all but
one of 18 patients who were not receiving medications for their disease were correctly
classified. Altogether, these findings document robust differences in brain function between
the PTSD and control groups that can be used for differential diagnosis and which possess the
potential for assessing and monitoring disease progression and effects of therapy.

1. Introduction

In a previous paper [2], we reported on the power of
SNI to discriminate various brain disorders. In that study,
using a resting state paradigm, neuromagnetic signals were

9 Author to whom any correspondence should be addressed.

recorded using MEG while subjects fixated on a spot of
light for 60 s. After fitting an autoregressive integrative
moving average (ARIMA) model and taking the stationary
and non-autocorrelated residuals, all pairwise, zero-lag,
partial crosscorrelations

(
PCC0

ij

)
and their z-transforms

(
z0
ij

)
between i and j sensors were calculated, yielding estimates
of the strength and sign of direct synchronous coupling at
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1 ms temporal resolution. Small subsets of z0
ij reliably

classified subjects to seven groups (six brain disorders and
a control group). A key feature of that work was the
use of genetic algorithms to successfully screen for and
identify those subsets of z0

ij that would be good classifiers.
The excellent results obtained documented the presence of
significant information in z0

ij but left unclear the issue of
how to find those subsets in a systematic fashion. In the
present study, we had four major objectives, as follows. First,
we applied the SNI test to a new (with respect to [2]) brain
disorder, namely PTSD, for which no biomarkers are currently
available [1]; second, we developed a robust classification
method without using genetic algorithms; third, we used
extensively the bootstrap (resampling with replacement) [3]
to take into account practically all the variability in the subject
populations; and fourth, we applied this new approach to
simulate an ‘externally validated’ clinical trial and derive
expected long-term, overall group classification rates as well
as confidence intervals in classifying individual subjects.

2. Materials and methods

2.1. Subjects

All subjects participated in the study after providing informed
consent, in adherence to the Declaration of Helsinki, and
were financially compensated for their time. All study
protocols were approved by the respective Institutional Review
Boards.

2.1.1. PTSD group. Subjects were recruited from a database
of veterans living in Minnesota and Wisconsin who had one
or more contacts with the Minneapolis VA Medical Center.
Their clinical records were reviewed to identify those with a
likely current PTSD diagnosis, determined using a structured
clinical diagnostic interview. These mental health assessments
were based either on the CAPS [4] or DSM-IV-TR SCID
PTSD module [5]. Recruitment letters were then sent to
the subjects identified and the study coordinator followed up
with phone calls to inquire whether they would be interested
in participating. Interested veterans were invited to the VA
Medical Center for an interview and to possibly participate
in the MEG study. Ultimately, we included in this study
only patients (N = 74) with confirmed PTSD as their primary
diagnosis based on standard structured clinical interviews
appropriate for PTSD. To minimize subject burden, we did not
contact veterans with indicators of instability within the last
6 months (e.g. inpatient medical or mental health treatment,
significant changes in health or medications, etc) or those with
psychotic disorders based on medical record review. We also
excluded veterans with active substance use disorders, serious
chronic pain and other CNS disorders (e.g. Parkinson’s disease,
dementia, cerebral vascular accidents, etc).

Of the 74 PTSD patients studied, 69 were men (52.2 ±
1.77 years, mean ± SEM) and 5 were women (46.2 ±
4.12 years). Several patients had PTSD linked to childhood
abuse or non-military trauma experienced as an adult (e.g.
sexual assault). Those with combat trauma served in various

wars, including World War II and the wars in Iraq and
Afghanistan; most had fought in the Vietnam War. With
respect to medications, 56 patients received medications
related to PTSD whereas the remaining 18 were not receiving
any such medications. Finally, for 50 patients, it was possible
to derive an index of PTSD symptoms severity [6] through
summation of 17 symptom scores from the SCID-PTSD
module. Each of these symptoms was scored 1 (absent), 2
(subthreshold) or 3 (threshold); scores ranged from 17 to 51.

2.1.2. Control subjects. Healthy subjects (N = 250) within
the age range of the PTSD patients were recruited from the
general public; 151 were men (52.2 ± 1.3 years, mean ± SEM)
and 99 were women (49.9 ± 1.6 years). Health was assessed
by clinical interview of the subject upon initial contact and
again in more detail at the time of consent. This included a
general medical history, medication use and a detailed review
of neurologic and psychiatric history.

2.2. Task and data acquisition

As with previous work [2], a simple fixation task was employed
to engage the brain in a stable condition. Subjects lay supine
within the electromagnetically shielded chamber and fixated
their eyes on a spot ∼65 cm in front of them, for 60 s. MEG
data were acquired using a 248-channel axial gradiometer
system (Magnes 3600WH, 4-D Neuroimaging, San Diego,
CA), sampled at 1017.25 Hz and band filtered between 0.1and
400 Hz.

2.3. Data pre-processing

Prior to the main analyses, cardiac correction of the MEG
signals was performed using synchronous event subtraction
[7, 8]. Subsequently, single trial MEG data from all
sensors underwent ‘prewhitening’ [9, 10] using an (25,1,1)
ARIMA model [2] to yield practically stationary and non-
autocorrelated results. Residuals were estimated using the
SPSS statistical package (SPSS for Windows, version 15,
SPSS Inc., Chicago, IL, 2006).

2.4. Crosscorrelations

All possible pairwise zero-lag crosscorrelations (N = 30 628,
given 248 sensors) were computed using the DDCCF routine
of the IMSL statistical library (Compaq Visual Fortran
Professional edition version 6.6B). Next, the partial zero-
lag crosscorrelations PCC0

ij between i and j sensors was
computed for all sensor pairs; thus, for any given pair of
sensors (from a total of 248), the effects of the remaining 246
sensors were partialled out. The PCC0

ij was then transformed
to z0

ij using Fisher’s z-transformation [11] to normalize its
distribution:

z0
ij = 0.5

[
ln

(
1 + PCC0

ij

) − ln
(
1 − PCC0

ij

)]
. (1)

In total, there were 30 628 such Z predictors; we denote by
z0
ijs the specific value of Z for a particular subject.
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2.5. Group discrimination and intermediate classification

Classification of individual subjects to the PTSD or control
group was performed using the bootstrap [3] as the key
approach. This approach was motivated by the common
practical situation where a ‘new’ subject S needs to be
classified, given subjects of known condition, i.e. belonging
to a control (i.e. non-PTSD) group C or to the PTSD group D.
In classical discriminant analyses, S is assigned to the group
(C or D) which yields the greater classification score in a
single run. However, a major objective in clinical practice
is to evaluate, if possible, S’s assignment with respect to the
larger populations C′ and D′, of which C and D are samples.
Classification rates for C′ and D′ can be approximated using
the bootstrap, by calculating S’s assignment R times with
respect to bootstrap samples of equal (between groups) and
sufficiently large size B drawn with replacement from C and
D. In this way, R assignments (i.e. classification outcomes and
corresponding posterior probabilities) are obtained from which
S’s classification is then computed (based on the outcomes
of R bootstraps), together with a confidence interval on the
assignment. A sufficiently large number G of subjects (per
group) can thus be classified to obtain long-term estimates
of the accuracy of classification. This approach provides a
more realistic and practically more useful evaluation of S’s
assignment than a single run, since it takes into account the
variability of C and D. This plan was implemented as described
below and illustrated in figure 1.

Let C and D denote the control and disease (PTSD)
samples, respectively, where NC = 250 and ND = 74 subjects
(NTOTAL = NC +ND = 324 subjects). The analysis proceeded
in the following steps.

Step 1: subject to be classified. This ‘external’ subject S to be
classified (figure 1, top left) is left out of the calculations in
steps 2–5 below.

Step 2: first-stage bootstrap samples for classification
coefficients. From the remaining subjects, compose two
bootstrap samples C∗ and D∗ of equal size B = NC∗ =
ND∗ , by resampling with replacement from C and D,
respectively. These samples will be used to generate
classification coefficients for an intermediate classification of
S. This step is shown in figure 1 as the parallel arrows from
the green box loop leading into the blue box loop, wherein the
two bootstrap samples are composed.

Step 3: second-stage bootstrap samples for predictor selection
based on a distance measure. Compose two new bootstrap
samples, C∗∗ and D∗∗ of equal size B ′ = NC∗∗ = ND∗∗ , by
resampling with replacement from C∗ and D∗. Now, for each
Z predictor, calculate a distance measure QZ between C∗∗

and D∗∗ based on some attribute ξ of z0
ij (e.g. mean, median,

variance, etc; see the appendix below) and keep a running
sum of QZ ,

∑
QZ , over a number of M repetitions of this

step. This is illustrated in figure 1 as the procedures within the

Figure 1. The classification procedure flowchart. Three distinct
bootstrap loops that are integrated into the whole classification
procedure are highlighted as (i) red box; (ii) blue box and (iii) green
box loops. The classification of an external subject (S) is the first
step (step 1 in the text) and begins at the top, within the green box
loop. Thereafter, two equal-size bootstrap samples
(B = NC∗ = ND∗) are composed from the remaining pool of
subjects (NC + ND − 1) and this (step 2 in the text) is indicated in
the figure as the parallel arrows stemming from the green box loop
into the blue box loop toward the two bootstrapped samples. From
C∗ and D∗, another two new sets of equal-size bootstrap samples
are composed (B ′ = B = NC∗∗ = ND∗∗ ) as the classification
procedure enters the red box loop. Within the red box loop, a
measure of distance Q between the two groups for a given predictor
Z of the two groups is determined and summed cumulatively over M
repetitions (step 3 in the text). This cumulative sum of the distance
measure (

∑
QZ) is ranked for all 30 628 predictors, and the

top-ranking K predictors are used to derive group classification
coefficients using linear discriminant analysis (LDA) on C∗ and D∗.
Next, the posterior probabilities for the assignment of S into either
the control or diseased group are calculated and cumulatively
summed over L repetitions. The blue box loop represents the series
of calculations (steps 4, 5, 6 in the text) for each of the L repetitions,
each of which also includes the red box loop of M repetitions. From
these cumulative posterior probabilities (

∑
pC and

∑
pD), the

external subject S is classified based on the larger cumulative
probability of the two. This intermediate classification process
(steps 2 through 6) is repeated R times. This is represented
by the green box loop, which encompasses both the blue
box and red box loops, as well. Finally, the outer yellow box
loop describes the full classification procedure (refer to
section 2.6).
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Figure 2. An overview of the procedure to classify a new subject. Existing population samples of control (C) and disease groups
(D) contribute to the derivation of top-ranking K predictors (over M repetitions in the predictor reduction loop; figure 1), with which
classification coefficients are calculated (over L′ repetitions in the assignment of classification functions loop; figure 1). A set of
classification coefficients for the assignment of S to either group is derived for each L′ repetition, and the corresponding probabilities of
assignments (pC ;pD) are calculated. An intermediate assignment outcome is based on the cumulative probability of assignment of S to
either group (

∑
pC ;

∑
pD) at the end of L′ repetitions, the larger of which determines the assignment of S. The final assignment is based on

the mean of the R′ repeated bootstrapped classification outcomes for the external validation of S (refer to section 3.3).

red box loop, which culminates in the cumulative sum of the
distance measure between the two samples’ predictors

(
z0
ij

)
.

Step 4: predictor selection. Rank-order
∑

QZ and retain those
K number of Z predictors with the top-ranked

∑
QZ . These

are the predictors with the highest potential for separating the
two groups. (Note that this procedure does not rely on, and is
independent of, any classification analysis.)

Step 5: classification coefficients from first-stage bootstrap
samples. Use these K predictors above to derive classification
functions for the two groups (i.e. control and PTSD) using the
C∗ and D∗ samples as input subjects in a linear discriminant
analysis (LDA). (For that purpose, the DDSCRM routine of
the IMSL statistical library was used, with each observation
weighted by the inverse of variance of that observation with
respect to the K predictors.)

Step 6: intermediate classification of S.

6.1. Use these functions to compute pairs of posterior
probabilities pS

C and pS
D that S belongs to the control or disease

group, respectively.

6.2. Keep running sums of
∑

pS
C and

∑
pS

D over a number
of L repetitions of steps 2 through 5. (These calculations are
shown in figure 2, as the analysis moves from the red box

loop to the blue box loop where the posterior probabilities are
cumulatively summed over the L repetitions.)

6.3. Intermediate classification: classify subject S (at the end
of L repetitions) based on the greater sum: if

∑
pS

C >
∑

pS
D ,

subject S is assigned to the control C group, whereas if∑
pS

C <
∑

pS
D , subject S is assigned to the disease D (PTSD)

group. (If
∑

pS
C = ∑

pS
D , repeat the analysis; this never arose

in this study.) This step is depicted in figure 1 as the analysis
moves from the blue box loop into the green box loop. (Very
similar results are obtained if the binary outcomes of the
intermediate classification are used instead of the posterior
probabilities; we prefer the latter due to their finer grain.)

6.4. Repeat steps 1 through 6.3 R times to generate a large
sample of intermediate classifications. This is illustrated as
the procedures within the green box loop, which encompasses
the blue and red box loops in figure 1.

Step 7: systematic evaluation of classification parameters.
For any number of R intermediate classifications, compute the
following measures:

Sensitivity (%)

= Number of patients correctly classified

Total number of patients
× 100 (2)

4
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Table 1. Intermediate classification results for different measures ξ
and combinations of the parameters L, M , using B = B ′ = 100 and
R = 1. See the text for explanation of abbreviations.

ξ K L M Classification accuracy

1 40 7 3 89.3
2 40 7 3 88.5
3 40 7 3 90.2
4 40 7 3 90.8
4 40 7 7 92.8
4 40 11 7 92.0

Specificity (%)

= Number of control subjects correctly classified

Total number of control subjects
× 100

(3)

Overall accuracy (%) = Sensitivity + Specificity

2
. (4)

These measures allow for a quick way (for small L and R) to
assess key parameters employed, namely, the sizes of bootstrap
samples (B, B′), the number of predictors (K), the number of
bootstrap iterations (M,L,R) and the ξ attribute of z0

ij . This
is shown as the external yellow box loop in figure 1.

2.6. Final classification of an external subject, including
confidence intervals

The preceding section outlined the bootstrap-based
classification procedure and provided the means by which to
assess the performance of the classifier for different parameter
values based on intermediate classifications of S. In this
section, we present the procedure by which an external subject
is ultimately classified (figure 2) and by which confidence
intervals are generated on the classification outcome. Let rS

C

and rS
D be the running counts of intermediate S assignments

(based on L′) to group C or D, respectively, over a suitably large
number of R′ repetitions of steps 2–6. Then, the resulting
proportions of classification to each one of the two groups,

hS
C = rS

C

R′ and hS
D = rS

D

R′ , can be regarded as long-term, expected
probabilities for classifying S to the control or the PTSD
group, respectively, at a 0.5 probability threshold (for a binary
outcome); corresponding confidence intervals are obtained by
bootstrapping hS

C and hS
D over a W number of R′. Then, hS

C

and hS
D (and their confidence intervals) denote the strength

(and associated uncertainty) of single subject classification,
based on the existing C and D samples.

3. Results

3.1. General classification results

The results obtained using K = 40 top-ranked predictors and
different distance measures and combinations of parameters
are given in table 1. It can be seen that the overall results
were excellent with high rates of accuracy of classification.
The results were very similar for various ξ attributes of z0

ij .
We chose K = 40 as an upper bound for detailed testing for

Table 2. Intermediate classification results for different numbers of
top-ranked predictors K using B = B ′ = 100, G = 100, L = 7,
M = 3, ξ = 4.

K Classification accuracy

5 87.3
10 90.0
15 91.2
20 91.6
25 92.2
30 93.0
35 90.3
40 90.8

Table 3. Final classification results and associated statistics for the
following parameters: B = B ′ = 100, ξ = 4, K = 40, R′ = 101,
L′ = 1000, M = 3. χ 2 is the chi-square statistic, ϕ is the phi
coefficient and ω is the odds ratio.

Actual

Control PTSD Total

Predicted Control 219 2 221
PTSD 31 72 103
Total 250 74 324

Two-way table statistics
% P-value

Sensitivity 97.3 χ 2 189.8 <0.001
Specificity 87.6 ϕ 0.765
Accuracy 92.4 ω 254.3

three reasons. First, for simplicity, we wanted to keep K small.
Second, the summed distance measure

∑
QZ used to select

the top K predictors was steeply exponentially distributed (data
not shown), which means that only the initial part of the
distribution carried the most useful information for separating
C∗∗ and D∗∗. And third, the accuracy of prediction increased
with K, tending to a plateau with K > 20 (refer to table 2).

3.2. Single subject classification

Each one of the 324 subjects in this study was classified
based on 12 000 pairs of

{
pS

C, pS
D

}
per subject, generated

using K = 40, B = B ′ = 100 and M = 3. Intermediate
classifications of S were obtained from these data by summing
a suitably large number of L′ pairs

{
pS

C, pS
D

}
, randomly drawn

with replacement (out of the 12 000 available), and counting
outcomes over R′ = 101 repetitions to yield hS

C and hS
D (and

confidence intervals of hS
C and hS

D over a W number of R′,
with W = 100). Table 3 shows the results obtained using
B = B ′ = 100, ξ = 4, K = 40, R′ = 101, L′ = 1000
and M = 3. It can be seen that excellent classification was
achieved, with a high (>90%) rate of classification accuracy.
With respect to the two-way table itself, there was a highly
statistically significant association between actual diagnosis
and predicted classification. In addition, the high value of
the ϕ coefficient (0.765) validates the high accuracy of the
prediction of diagnosis. The distributions of hS

C and hS
D are

shown in figure 3.
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Figure 3. Distributions of classification probabilities hS
C and hS

D (R′ = 101, L′ = 1000, K = 40, M = 3) for the control (left panel) and
PTSD groups (right panel).

Table 4. Descriptive statistics for a subject with the hS value near 0.5. Results were obtained by running W = 100 times the classification
procedure mentioned in table 3 (B = B ′ = 100, ξ = 4, K = 40, R′ = 101, L′ = 1000, M = 3). C/W denotes the ratio of correct/wrong
predicted diagnosis; no cases with hS = 0.5 were encountered.

hS from W = 100 repetitions

Actual diagnosis Predicted diagnosis hS
C Median Mean SEM Lower 95% CI Upper 95% CI C/W

C C 0.545 0.574 0.576 0.004 39 0.568 0.585 95/5

Finally, of 18 non-medicated PTSD patients, only
one was misclassified and 17/18 = 94.4% were correctly
classified. Similarly, of the 56 medicated patients,
only one was misclassified and 55/56 = 98.2% were correctly
classified. These two classification proportions between the
non-medicated and medicated PTSD patients did not differ
statistically significantly (P = 0.98; the test of two proportions,
see [11]).

3.3. Strength of single subject classification

The estimates of the probabilities of classification hS
C or hS

D

can be regarded as estimates of the strength of classification,
irrespective of whether the classification is correct or not,
where a value of hS = 1

(
hS

C or hS
D

)
indicates highest

certainty of prediction. Indeed, such an unequivocal result
was obtained in 189/324 (58.3%) subjects; the median hS was
1.0 and the interquartile range 0.08. For the control group,
hS was 1.0 in 155/250 = 62% subjects, with the median =
1.0 and the interquartile range = 0.06; for the PTSD group,
hS was 1.0 in 34/74 = 45.9% subjects, with the median =
0.98 and the interquartile range = 0.12. These results attest
to the ability of our classification procedure to yield clear
outcomes. In addition, such outcomes remained robust over
many repetitions of the procedure (e.g. W = 100). Now, in
those cases where hS < 1, confidence intervals on hS can
be generated based on W repetitions to further assess the
robustness of the classification outcome. When hS is high
enough (e.g. >0.8), there is no issue, whereas for cases with
hS near 0.5 further analysis is warranted. In the present study,
there was one such case (indicated by an arrow in figure 3,
control group). For that subject, the values hS

C = 0.545 and
hS

D = 0.455 were obtained; hence, the subject was assigned to
the control group. To confirm this assignment, we then ran the

procedure W = 100 times. The results are shown in table 4.
It can be seen that the assignment of this subject to the control
group was justified, based on more extensive testing. In fact,
the results of this more extensive testing gave even stronger
evidence (0.576) for the correct classification than the original
procedure (0.545). The point is that, in general, this procedure
can lead to specific, quantitative criteria for classification (e.g.
that a lower 95% CI value be on the same side as the mean) or
for declaring a subject unclassifiable, based on inconclusive
results.

3.4. Relation to PTSD symptom severity

As mentioned above, a quantitative index of PTSD symptom
severity was available for 50 patients. The magnitude of
this index was compared between two subgroups of patients,
namely those for whom hS

D = 1 (most certain classification;
N = 21) and those for whom hS

D < 1 (N = 29). We found
that the mean PTSD severity index was significantly higher
in the former than the latter group (P = 0.037, independent
samples two-tailed t-test; mean difference = 3.46). This
result indicates a significant positive association between the
certainty of prediction and the severity of symptoms.

4. Discussion

The results of this study extend the power of the SNI test as
a functional neuromarker for PTSD, a disorder for which no
useful biomarker currently exists [1]. Remarkably, a high
correct classification rate was obtained for PTSD patients
who were not medicated for their disease. This finding
in particular, and the high overall accuracy of classification
in general, indicate a distinct difference in synchronous
neural interactions between PTSD and control subjects. This
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distinction is robust, for it was observed consistently across
many random bootstrap samples from the whole population.
The excellent results obtained offer major promise for the
usefulness of the SNI test for differential diagnosis as well
as for monitoring disease progression and for evaluating the
effects of psychological and/or drug treatment. This prospect,
and a specific link of SNI to PTSD, is strengthened by the
significant association found between the certainty of PTSD
patient classification based on the SNI and their symptom
severity.

The bootstrap-based approach used in this study is in
keeping with the approach advocated recently for biomarker
research in general [12]. Essentially, our approach
simulates external cross-validation where a subject is classified
without feedback of classification information to improve
the procedure. Instead, the subject is first classified many
times against random samples from the existing populations
(‘intermediate’ classification), and then the bias in these
classification outcomes toward one or the other group
determines the ‘final’ assignment. It is worth noting that the
only use of the linear discriminant analysis in this approach is
to derive classification coefficients from bootstrap samples (to
apply to the external subject) without using, or paying attention
to, the performance of the linear discriminant analysis itself
with respect to the bootstrap samples. Actually, a crucial
and innovative aspect of our approach is the procedure for the
selection of a very small fraction of predictors (40 out of 30 628
available, i.e. 0.13%) to be used in the discrimination. This
procedure is based on accumulating information concerning
the distance between the two groups’ distributions from a
number of bootstrap samples. The conceptual hallmark of
the whole approach lies in the extensive resampling of the
existing populations in an open-loop way, thus utilizing most
of the information available. This approach renders further
credence and robustness to the present results and lends itself
as a general-purpose procedure for assessing the usefulness of
potential biomarkers in other applications.
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Appendix A

Attributes ξ of z0
ij in C∗∗ and D∗∗ samples used in the analysis.

(1) Absolute difference between means mC∗∗ and mD∗∗ :

ξ = |mC∗∗ − mD∗∗ |. (A.1)

(2) Absolute difference between medians m′
C∗∗ and m′

D∗∗ :

ξ = |m′
C∗∗ − m′

D∗∗ |. (A.2)

(3) Standard normal score of the Wilcoxon rank-sum statistic
W (based upon a variance that has been adjusted for ties) [13]:

ξ = Wnormal. (A.3)

(4) Signal-to-noise ratio (SNR):

ξ = SNR = |mC∗∗ − mD∗∗ |√
vC∗∗
NC∗∗ + vD∗∗

ND∗∗

, (A.4)

where vC∗∗ and vD∗∗ are the variances of z0
ij in C∗∗ and D∗∗.
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